
axsym engineering

Teclab Paper 01 (Issue 1) 1

HANDLING DATA IN AUTOMATED ANALYSIS PROCESSES

Stuart Moffatt December 2019

Automating analysis processes can become arduous if data dependencies and data structures are not

planned carefully in advance. Commonly, software requirements evolve over time and changes to the

software become more difficult to implement as packages grow in complexity. In this paper, a

methodology is presented for handling data dependencies that uses a new central data management

concept for handling varied data ontologies and data dependencies. This innovation in data

management provides a scalable solution for software that adapts to changes in data structures as

integrated analysis tools evolve. The data handling methodology is presented and its application

within Axsym’s software integration environment Teclab is demonstrated by a case study to automate

a road network management analysis process.

1 INTRODUCTION
Simulation and analysis often involve repetitive manual processes. For example, data must be

acquired and transformed into analysis inputs; then data files must be manipulated, and software

packages run; finally, the results must be interrogated, displayed, checked and stored. Automating

analysis processes can improve the quality of simulation results through reduced human error,

improved repeatability and enabling a greater number of simulation cases to be processed. Faster

analysis turnaround times can reduce project lead times and allow cases to be investigated in more

detail.

Automating data handling between different elements of a simulation can be problematic if software

architectures have not been carefully planned and data structures within the code become

fragmented. Variables are handled according to their data type, some of which may not be known

upfront to the developer, adding complexity to the development of software architecture. In addition,

numerical algorithms may require spatial discretisation of analysis variables on a computational grid,

involving interpolation and transfer between coordinate systems.

Axsym have extensive experience integrating engineering software for analytical process automation

and for multi-physics simulation. To facilitate the integration of algorithms and datasets Axsym have

developed innovate software methodologies for variables handling. The Teclab software package has

been developed by Axsym to provide a framework for software integration and overcome data

handling challenges when creating automation utilities.

2 DATA MANAGEMENT
Teclab uses a central datastore for managing the analysis variables that are accessed by different

elements of an integrated analysis process. Each element in a process workflow is referred to as a

domain, and includes analysis algorithms, data files and external software packages. The datastore

provides a central management system for all variables within each of the domains. The datastore is

structured to segregate the variables between domains, which allows individual domains to be copied

to create a new instance of the domain without causing ambiguity across variables with the same

axsym engineering

2 www.axsym-engineering.com/publications

name, as each variable belongs to a specific instance of the domain. Access to variables between

domains is controlled centrally by the governance process (Moffatt, 2020) which resolves data

dependencies between domains and determines how each analysis variable is accessed by different

elements of the simulation. The datastore manages variables by assigning them to a domain (or more

specifically to an instance of a domain) within the analytical process. For each domain, the output

variables, input variables and computational grids are stored in the centralised data management

system known as the datastore.

2.1 DOMAIN VARIABLE PROCESSING
The distinction between input and output variables is as follows:

o Input variables into a domain are set from the output variables from other domains. They

include input variables into algorithms, data inputs into external software packages and data

written to file. Input and output variables are handled differently, as the input of one domain

is dependent on the output of another; input variables are only stored as references to other

output variables.

o Output variables have the values set by the domain, such as the results from a numerical

calculation, output from an external software package or data read in from file. The datastore

groups all output variables from each domain and controls how other domains can access

these as input variables.

In order to process complex model ontologies, the outputs of several modelling domains may require

aggregating to provide a single input value. An example is a structural beam model that experiences

loads from multiple sources, such as wind loading acting on different regions of a tower or aircraft

wing that is attached at one end to a supporting structure. Figure 1 shows three wind load models

providing forces at the structure’s built-in end, mid-section and free end. The beam model will have

an input variable, force, and the three wind load models each produce force as an output variable.

Figure 1: Example of superposition of variables from multiple algorithms, where the wind loads from three individual
models are combined to provide overall loading on the beam structure.

axsym engineering

Teclab Paper 01 (Issue 1) 3

The beam model therefore has a dependency on the wind models and requires the summation of the

resulting force distributions from the three wind load models, thus providing the force as an input

variable into the beam model. To aggregate output variables into a single input variable, the input

variable is stored as a series of references to the corresponding output variables where there is a

dependency. When the datastore is queried for the values of the input variable, the output variable

values of the referenced domains are retrieved and then summed.

2.2 DECLARATION OF ANALYSIS VARIABLES
The centralised datastore enables analysis variables to be declared at runtime, giving great flexibility

in building integrated analytical systems. Software developers have the option to hard code analysis

variables definitions into the source code when building in new analysis methods. Alternatively,

variables can be defined in an external data file, enabling external software and datasets to be linked

without needing to modify the source code. The ability to handle variables arbitrarily becomes

especially important when linking with dynamic datasets such as spreadsheets, as discussed in the

data adapter in Section 3.

2.3 VARIABLE TYPES
Variables can be real numbers, integers or character strings and can be represented as scalars, vector

fields or matrices.

2.3.1 SCALAR
A scalar variable 𝒗 distributed over a grid of size 𝑚 by 𝑛 will take the form

𝒗 = [

𝑣11 … 𝑣1𝑛

⋮ ⋱ ⋮
𝑣𝑚1 … 𝑣𝑚𝑛

]

2.3.2 VECTOR FIELD
A vector field 𝒗̅ is a real variable that is spatially distributed over a computational grid 𝒈̅, where the

value stored at each grid node 𝑔̅ in the form of a vector 𝑣̅. A vector field can represent the continuous

distribution of a vector over any computational grid of up to three dimensions. The wind loads

example shown in Figure 1 is a vector field of force 𝒇̅ distributed over a 1D grid 𝒈̅ that represents the

beam geometry as a 1D grid of size 𝑚. The wind loads will be applied as 3D force vectors at each grid

node.

A 3D force vector 𝑓̅ = {

𝑓𝑖
𝑓𝑗
𝑓𝑘

} distributed over a 1D grid of 𝑚 nodes would take the form

𝒇̅ =

[

{

𝑓𝑖
𝑓𝑗
𝑓𝑘

}

1

⋮

{

𝑓𝑖
𝑓𝑗
𝑓𝑘

}

𝑚]

axsym engineering

4 www.axsym-engineering.com/publications

where a force 𝑓 ̅is applied to each node 𝑔̅ = {
𝑥
𝑦
𝑧
} on grid 𝒈̅ of size 𝑚

𝒈̅ =

[

 {

𝑥
𝑦
𝑧
}

1

⋮

{
𝑥
𝑦
𝑧
}

𝑚]

A 3D vector 𝑣̅ = {

𝑣𝑖

𝑣𝑗

𝑣𝑘

} distributed over a 2D grid 𝑚 by 𝑛 would take the form

𝒗̅ =

[

 {

𝑣𝑖

𝑣𝑗

𝑣𝑘

}

11

⋯ {

𝑣𝑖

𝑣𝑗

𝑣𝑘

}

1𝑛

⋮ ⋱ ⋮

{

𝑣𝑖

𝑣𝑗

𝑣𝑘

}

𝑚1

⋯ {

𝑣𝑖

𝑣𝑗

𝑣𝑘

}

𝑚𝑛]

where each vector field element 𝑣̅ is applied to a node 𝑔̅ = {
𝑥
𝑦
𝑧
} on grid 𝒈̅ of size 𝑚 by 𝑛

𝒈̅ =

[

 {

𝑥
𝑦
𝑧
}

11

⋯ {
𝑥
𝑦
𝑧
}

1𝑛

⋮ ⋱ ⋮

{
𝑥
𝑦
𝑧
}

𝑚1

⋯ {
𝑥
𝑦
𝑧
}

𝑚𝑛]

Each vector field variable is assigned a master grid, providing the geometry onto which the values are

defined. The values of a vector field variable can be requested on another grid, where the values will

be interpolated by the datastore from the nodes on the master grid to the destination grid.

2.3.3 MATRIX
Matrix variables are structured in a similar manner to vector fields with the exception that they are

not associated with a computational grid. Each element in a matrix variable represents a cell in the

matrix and the contents of each cell can be real, integer or character strings. Since an analysis variable

is specified to have a certain type, all cells in a matrix variable must have the same data type.

3 DATA ADAPTER
The data adapter is a user-configurable domain (or element) in the workflow process that provides an

interface to an external software utility or dataset. It can read or write data to file and execute external

software applications or scripts. Figure 2 shows how the data adapter connects external systems with

the internal data structure. Information is passed through the data adapter as analysis variables which

are made available to other domains (including other data adapters) through the central datastore.

axsym engineering

Teclab Paper 01 (Issue 1) 5

Figure 2. Data adapter connection to external applications and data

The data adapter is configured using a set of user-specified instructions contained within an XML file

that is easily edited using an Excel spreadsheet utility. Specific information provided by the data

adapter identifies the host operating system, parsing directives, data ontologies, scripts for invoking

external software and network protocols. Input and output variables to be transferred between the

datastore and the external software are specified in the data adapter configuration file, together with

the necessary file parsing information that provides the semantics and data formats for reading and

writing variables to file. External software applications are invoked through a system call, giving scope

to run programs directly or through batch scripts to provide additional functionality such as

networking protocols or filesystem manipulation.

4 PROCESS AUTOMATION CASE STUDY
The ability to integrate computational methods and datasets using varied data types distributed across

the nodes of different grids is demonstrated for road network management. This case study provides

a practical automation solution for the labour-intensive analysis process of traffic modelling on road

networks, which is also applicable to other network simulations, including utilities and other transport

modes.

4.1 REQUIREMENT FOR AUTOMATION
When planning changes to the road network such as upgrades or road closures, transport authorities

combine microsimulation models with strategic models to assess traffic flow behaviour on the local

and surrounding road systems. The need for two distinct modelling approaches requires a substantial

amount of manual data processing of traffic volumes (network loads). This process is complicated by

differences in model granularity, where smaller roads may not be present in both models (requiring

data handling between different models) and vehicle categories may be aggregated (requiring

summation of output data from one model as input for another).

Handling network models of different geographical extent involves a cordoning process to curtail the

strategic model at a localised boundary, corresponding to the boundary of the microsimulation. The

cordoning process is carried out using a series of utilities, producing numerous data files to be

processed, catalogued and stored for future use. Due to differences in the granularity within the

cordon zone, network loads cannot be directly transferred between models. Instead, the change in

loading against a baseline case on one model is evaluated then applied to the baseline load on the

other model. Since loading values can vary between very high and very low values, calculating load

axsym engineering

6 www.axsym-engineering.com/publications

changes as an increment or factors could introduce errors, therefore a more resilient numerical

process is needed to weight loading values being transferred between domains.

4.2 SOLUTION
Axsym provided Transport for Greater Manchester with a software tool to automate the transfer of

traffic flow behaviour between the Greater Manchester strategic road network model and a

microsimulation package. The tool was delivered as a desktop utility to automate data processing, file

management and the running of software utilities. An outline of the process is shown in Figure 3.

Figure 3. Network load transfer process

The interactions of variables with the datastore and with data files and applications are shown in

Figure 4. The workflow has five domains: Case Manager, Data Adapter, Network Model A Interface,

Network Loads Transfer and Network Model B Interface. These are discussed below:

Case Manager Information about the case entered by the analyst is processed by the Case

Manager domain. The Case Manager provides access to case definition

variables to all relevant simulation domains.

Data Adapter The data adapter runs a series of external software utilities for carrying out

the network cordoning process, where file management and the execution

of external codes is done through the system calls to the operating system.

Model A Interface The interfacing domain for the strategic model (Network model A) reads

network definition and loads data from files in a proprietary format and

assembles this data into variable arrays that are uploaded to the datastore.

Loads Transfer The network loads transfer domain compares network loading with baseline

values on Network A and incorporates a weighting function to transfer the

change in loading to the microsimulation (Network B). Aggregation of

loading classes (in this case vehicle classes) and differences in node density

around the cordon perimeter are handled according to the definitions

axsym engineering

Teclab Paper 01 (Issue 1) 7

provided by the user in the Loads Classifications and Zone Correspondence

files.

Model B Interface The resulting loads for Network model B are obtained from the datastore

and written in the required output file format to run the microsimulation of

the Network B model. In the case study, a commercial traffic

microsimulation package was selected, which required an analyst to interact

with the windows menu driven operations at the end of the automated

process.

Figure 4. Interactions between variables datastore, external applications and data files.

5 CONCLUSION
A methodology for the centralised handling of data dependencies has been presented that enables

integrated software tools to be developed organically without upfront knowledge of data structures.

The datastore is a core part of the Teclab software package, created to integrate a variety of numerical

algorithms, data files and external software packages. A variety of data types can be incorporated,

including real numbers, integers and character strings that can be represented as matrices or spatially

distributed variables. Real variables can be defined as vectors, enabling a single variable name to

represent a multi-dimensional vector field discretised over a computational grid of up to three

dimensions. A distinction is made between input and output variables, ensuring a cohesive set of data

dependencies between all domains within the system. Integrated systems can be structured to

aggregate the results of multiple domains, giving developers the ability to combine the outputs of

multiple analysis methods into a single input variable.

axsym engineering

8 www.axsym-engineering.com/publications

The road network analysis case study demonstrates the use of the centralised datastore for handling

a variety of data types stored as matrix variables that are linked through the data adapter to a series

of external data files and software packages.

6 REFERENCES
Moffatt, S., 2020. Framework for complex modelling ontologies. Axsym Engineering Publications,

Teclab Paper 02: http://www.axsym-engineering.com/publications/Teclab02.pdf

7 DOCUMENT INFORMATION
Author: Stuart Moffatt, BEng PhD

Title: Handling data in automated analysis processes

Report Type: Axsym Engineering Publications

Series: Teclab

Paper: 01

Issue: 1

Date: 30-12-2019

DOCUMENT REFERENCE

Moffatt, S., 2019. Handling data in automated analysis processes. Axsym Engineering Publications,

Teclab Paper 01: http://www.axsym-engineering.com/publications/Teclab01.pdf

CORRESPONDENCE

email: stuart.moffatt@axsym.co.uk

KEYWORDS

Data Management, Data Adapter, Analytical Process, Automation

FUNDING

This research was co-funded by Axsym Limited and Innovate UK (project 710722, title TecLab: intuitive

and adaptable visual drag and drop analytical simulation environment, end date 31-10-2016) to prove

the concept of an innovative computational framework for automating data intensive simulation

processes.

http://www.axsym-engineering.com/publications/Teclab02.pdf
http://www.axsym-engineering.com/publications/Teclab01.pdf

